wombat으로 multiple trait random regression model 풀기
R.A. Mrode가 제공한 예제
자료입력
1 4 4 1 4 17.0
1 4 4 2 38 18.6
1 4 4 3 72 24.0
1 4 4 4 106 20.0
1 4 4 5 140 20.0
1 4 4 6 174 15.6
1 4 4 7 208 16.0
1 4 4 8 242 13.0
1 4 4 9 276 8.2
1 4 4 10 310 8.0
2 4 4 1 4 11.0
2 4 4 2 38 12.4
2 4 4 3 72 16.0
2 4 4 4 106 13.3
2 4 4 5 140 14.0
2 4 4 6 174 10.6
2 4 4 7 208 10.8
2 4 4 8 242 9.6
2 4 4 9 276 6.6
2 4 4 10 310 5.9
1 5 5 1 4 23.0
1 5 5 2 38 21.0
1 5 5 3 72 18.0
1 5 5 4 106 17.0
1 5 5 5 140 16.2
1 5 5 6 174 14.0
1 5 5 7 208 14.2
1 5 5 8 242 13.4
1 5 5 9 276 11.8
1 5 5 10 310 11.4
2 5 5 1 4 17.0
2 5 5 2 38 13.8
2 5 5 3 72 13.0
2 5 5 4 106 16.1
2 5 5 5 140 10.8
2 5 5 6 174 9.5
2 5 5 7 208 10.2
2 5 5 8 242 8.9
2 5 5 9 276 8.8
2 5 5 10 310 9.4
1 6 6 6 4 10.4
1 6 6 7 38 12.3
1 6 6 8 72 13.2
1 6 6 9 106 11.6
1 6 6 10 140 8.4
2 6 6 6 4 12.0
2 6 6 7 38 9.8
2 6 6 8 72 16.0
2 6 6 9 106 19.8
2 6 6 10 140 5.6
1 7 7 4 4 22.8
1 7 7 5 38 22.4
1 7 7 6 72 21.4
1 7 7 7 106 18.8
1 7 7 8 140 18.3
1 7 7 9 174 16.2
1 7 7 10 208 15.0
2 7 7 4 4 19.2
2 7 7 5 38 11.0
2 7 7 6 72 24.6
2 7 7 7 106 10.3
2 7 7 8 140 12.8
2 7 7 9 174 7.4
2 7 7 10 208 10.0
1 8 8 1 4 22.2
1 8 8 2 38 20.0
1 8 8 3 72 21.0
1 8 8 4 106 23.0
1 8 8 5 140 16.8
1 8 8 6 174 11.0
1 8 8 7 208 13.0
1 8 8 8 242 17.0
1 8 8 9 276 13.0
1 8 8 10 310 12.6
2 8 8 1 4 25.0
2 8 8 2 38 18.2
2 8 8 3 72 16.6
2 8 8 4 106 21.0
2 8 8 5 140 17.0
2 8 8 6 174 9.8
2 8 8 7 208 10.3
2 8 8 8 242 12.0
2 8 8 9 276 14.0
2 8 8 10 310 11.6
형질번호, 개체, 개체(영구환경효과), HTD(herd-test-day), DIM(days in milk), test day yield
위 자료를 data.txt로 저장
혈통입력
1 0 0
2 0 0
3 0 0
4 1 2
5 3 2
6 1 5
7 3 4
8 1 7
개체, 아비, 어미
위 자료를 pedi.txt로 저장
파라미터 파일 작성
# run option - 육종가를 구할 때
# RnSoln_xxx.dat 출력 파일 확인
#RUNOP -d --solvit
# run option - 육종가와 SEP(standard error of prediction)
# reliability(r2) = 1- SEP^2 / sigma_a^2
# RnSoln_xxx.dat 출력 파일 확인
RUNOP -v --blup
# run option - 좋은 초기값으로 분산성분을 추정할 때,
#RUNOP -v --good
# run option - 나쁜 초기값일 때 분산성분을 추정할 때,
#RUNOP -v --bad
# 요약 출력파일에 출력할 내용
COMMENT Multiple traits Random Regression Model
# Analysis Type : multiple traits random regression model
ANALYSIS MRR 2
# 혈통 파일 이름
# SumPedigree.out 확인
PED pedi.txt
# 자료 파일 이름
DATA data.txt
TR1 traitno 2
TR1 animal
TR1 pe_ani 99
TR1 htd 10
TR1 dim 100
TR1 milk1
TR2 traitno 2
TR2 animal
TR2 pe_ani 99
TR2 htd 10
TR2 dim 100
TR2 milk2
END DATA
# Model of analysis
# SumModel.out 확인
# 고정효과의 차수, 5개를 구하고 싶으면 (4, LEG)라고 넣을 것
MODEL
FIX htd
COV dim(4,LEG)
RRC dim
RAN animal(3,LEG) NRM
RAN pe_ani(3,LEG)
TR milk1 1
TR milk2 2
END MODEL
# 분산 성분
VAR animal 6
4.3320 0.8292 -2.1556 0.6347 0.2988 0.0980
0.1668 -0.3993 0.1685 0.0644 0.0292
1.1178 -0.2659 -0.1685 0.0172
0.5201 0.1905 0.0033
0.1161 -0.0593
0.1954
VAR pe_ani 6
6.872 -0.254 -1.101 2.238 0.307 1.021
3.171 0.167 0.072 -0.059 0.040
2.457 0.391 -0.254 0.399
4.475 -0.184 -0.958
1.971 0.143
1.057
VAR residual 1 HOM
3.710 1.256
2.213
# SumModel.out 확인
# SumEstimates.out 확인
# SumPedigree.out 확인
# FixSolutions.out 확인
# RnSoln_xxx.dat 확인
위 파라미터 파일을 wombat.par로 저장
실행
위 세 파일을 한 폴더에 넣고 다음과 같이 실행
결과 확인
SumModel.out
======= Version 19-05-2012 ======================================= **KM** ====
Program WOMBAT : Summary of information from Set-up step
==============================================================================
Multiple traits Random Regression Model
Analysis type : "MRR 2"
Data file : "data.txt"
Pedigree file : "pedi.txt"
Parameter file : "wombat.par"
No. of traits = 2
nrec mean sdev min. max.
1 "milk1" 42 16.2095 4.45283 8.00000 24.0000
2 "milk2" 42 12.8976 4.57338 5.60000 25.0000
Numbers of individuals/records for pairs of traits
1 2
1 "milk1" 42 42
2 "milk2" 5 42
Covariables
1"milk1" nrec mean sdev min. max.
1 "dim(4,LEG)" 42 138.381 94.9724 4.00000 310.000
2"milk2" nrec mean sdev min. max.
1 "dim(4,LEG)" 42 138.381 94.9724 4.00000 310.000
Control variables in RR analysis
Trait no = 1
nrec mean sdev min. max.
1 "dim" 42 138.381 94.9724 4.00000 310.000
Trait no = 2
nrec mean sdev min. max.
1 "dim" 42 138.381 94.9724 4.00000 310.000
Fixed effects
1 "milk1" nlev
1 "htd" 10
2 "milk2" nlev
1 "htd" 10
Random effects nlev
1 "animal" 8 NRM
2 "pe_ani" 5 IDE
======== end of file ============================01-04-2014==========07:06====
SumPedigree.out
======= Version 19-05-2012 ======================================= **KM** ====
Program WOMBAT : Summary of Pedigree Information
==============================================================================
Multiple traits Random Regression Model
Analysis type : "MRR 2"
Data file : "data.txt"
Pedigree file : "pedi.txt"
Parameter file : "wombat.par"
No. of animal IDs in data file = = 5
No. of animal IDs in total = = 8
*****Pedigree Structure for random effect : 1 ****************************
Original no. of animals = 8
No. of animals after pruning = 8
... proportion (%) remaining = 100.0
No. of levels w/out records = 3
No. of levels with records = 5 100.0%
... 7-10 record(s) = 1 20.0%
... 11-20 record(s) = 4 80.0%
Minimum no. of records specified = 5
No. of animals with at least 5 records = 5 100.0%
No. of parents which have progeny which
have at least 5 records = 6
No. of animals with at least 5 records
themselves or on a parent = 5
No. of animals with at least 5 records
themselves, on a parent or sib(s) = 5 62.5%
... in the data = 5 100.0%
Minimum no. of records specified = 6
No. of animals with at least 6 records = 5 100.0%
No. of parents which have progeny which
have at least 6 records = 6
No. of animals with at least 6 records
themselves or on a parent = 5
No. of animals with at least 6 records
themselves, on a parent or sib(s) = 5 62.5%
... in the data = 5 100.0%
Minimum no. of records specified = 7
No. of animals with at least 7 records = 5 100.0%
No. of parents which have progeny which
have at least 7 records = 6
No. of animals with at least 7 records
themselves or on a parent = 5
No. of animals with at least 7 records
themselves, on a parent or sib(s) = 5 62.5%
... in the data = 5 100.0%
No. of animals w/out offspring = 2 25.0%
No. of animals with offspring = 6 75.0%
... and records = 3 37.5%
No. of animals with unknown sire = 3
No. of animals with unknown dam = 3
No. of animals with both parents unknown = 3
No. of animals with records =
... and unknown sire = 0
... and unknown dam = 0
... and both parents unknown = 0
No. of sires = 2
... with progeny in the data = 2
... with records & progeny in data = 0
No. of dams = 4
... with progeny in the data = 4
... with records & progeny in data = 3
No. of animals with known/unpruned grand-parents
... with paternal grandsire = 0
... with paternal granddam = 0
... with maternal grandsire = 3
... with maternal granddam = 3
random effect no. = 1 NRM
no. of elements in NRM/GIN inverse 23
log determinant = -3.4657359027997265
random effect no. = 2 IDE
no. of elements in NRM/GIN inverse 0
log determinant = 0.
======== end of file ============================01-04-2014==========07:06====
FixSolutions.out
======= Version 19-05-2012 ======================================= **KM** ======================================
Program WOMBAT : GLS solutions for fixed effects
================================================================================================================
Multiple traits Random Regression Model
Covariables for trait no. 1 "milk1"
Covariable Reg.coeff Solution S.Error
1 dim(4,LEG) 1 -0.541757 1.95170
1 dim(4,LEG) 2 -0.165203 1.26138
1 dim(4,LEG) 3 0.376545 0.552589
1 dim(4,LEG) 4 -0.427158 0.516205
Covariables for trait no. 2 "milk2"
Covariable Reg.coeff Solution S.Error
1 dim(4,LEG) 1 -2.34417 1.49057
1 dim(4,LEG) 2 0.359730 0.780042
1 dim(4,LEG) 3 1.68621 0.400349
1 dim(4,LEG) 4 -0.394062 0.398121
Fixed effects for trait no. 1 "milk1"
Effect Orig.code Level Solution S.Error SolSum=0 No.recs Eff.Mean
1 htd 1 1 5.94621 3.93619 5.28309 3 20.733
1 htd 2 2 3.33349 3.06359 2.67037 3 19.867
1 htd 3 3 4.23337 2.72167 3.57026 3 21.000
1 htd 4 4 3.88828 2.42573 3.22516 4 20.700
1 htd 5 5 1.92108 2.16828 1.25796 4 18.850
1 htd 6 6 -1.41825 1.90636 -2.08137 5 14.480
1 htd 7 7 -1.35487 1.73923 -2.01798 5 14.860
1 htd 8 8 -1.32249 1.81273 -1.98561 5 14.980
1 htd 9 9 -4.02428 2.04274 -4.68740 5 12.160
1 htd 10 10 -4.57136 2.52065 -5.23447 5 11.080
1 htd 0.663119
Fixed effects for trait no. 2 "milk2"
Effect Orig.code Level Solution S.Error SolSum=0 No.recs Eff.Mean
1 htd 1 1 5.42938 2.84643 5.43591 3 17.667
1 htd 2 2 -0.735292 2.24681 -0.728761 3 14.800
1 htd 3 3 -0.860115 1.96747 -0.853584 3 15.200
1 htd 4 4 2.47263 1.69483 2.47916 4 17.400
1 htd 5 5 -0.943094 1.47219 -0.936563 4 13.200
1 htd 6 6 0.918558 1.26066 0.925090 5 13.300
1 htd 7 7 -1.90479 1.13638 -1.89826 5 10.280
1 htd 8 8 -0.752519E-02 1.20733 -0.994028E-03 5 11.860
1 htd 9 9 -0.543310 1.38695 -0.536779 5 11.320
1 htd 10 10 -3.89175 1.76356 -3.88522 5 8.5000
1 htd -0.653116E-02
** marks effects which have been set to zero for the analysis
======== end of file ============================01-04-2014==========07:06======================================
RnSoln_animal.dat 확인
Run N Original ID Tr Solution St.Error Ignore Inbr %
1 1 1 -0.196776 1.94733 0.353 0.000
1 2 -0.146562E-01 0.384229 0.339
1 3 0.143123 0.987672 0.357
1 4 0.140527 0.703834 0.218
1 5 0.195215E-01 0.333516 0.205
1 6 0.800214E-01 0.429217 0.239
2 2 1 0.258226 2.02801 0.225 0.000
2 2 0.110326E-02 0.398815 0.216
2 3 -0.255912 1.02940 0.228
2 4 -0.255230 0.713975 0.141
2 5 0.522345E-02 0.337850 0.130
2 6 -0.271499 0.436691 0.155
3 3 1 -0.614504E-01 1.98550 0.300 0.000
3 2 0.135529E-01 0.391129 0.288
3 3 0.112789 1.00760 0.303
3 4 0.114703 0.709646 0.178
3 5 -0.247449E-01 0.335738 0.171
3 6 0.191478 0.433947 0.190
4 4 1 0.838214 1.90978 0.398 0.000
4 2 0.112536 0.377638 0.381
4 3 -0.556133 0.967518 0.403
4 4 -0.141468 0.698545 0.249
4 5 0.681289E-01 0.331679 0.229
4 6 -0.291614 0.424954 0.275
5 5 1 -0.450875 1.86615 0.443 0.000
5 2 -0.110881 0.369660 0.425
5 3 0.172264 0.944986 0.448
5 4 -0.241377 0.691125 0.286
5 5 -0.602938E-01 0.328839 0.262
5 6 -0.115635 0.419610 0.315
6 6 1 -0.635096 1.99106 0.291 0.000
6 2 -0.127046 0.391936 0.281
6 3 0.291232 1.01176 0.290
6 4 -0.107865 0.714216 0.139
6 5 -0.272408E-01 0.336294 0.161
6 6 -0.798458E-01 0.435540 0.171
7 7 1 0.876195 1.93000 0.374 0.000
7 2 0.194807 0.380886 0.361
7 3 -0.352708 0.980598 0.374
7 4 0.272435 0.707791 0.192
7 5 0.474801E-01 0.333171 0.210
7 6 0.217034 0.433722 0.193
8 8 1 -0.353285 1.96876 0.452 12.500
8 2 0.203832E-01 0.390255 0.434
8 3 0.404530 0.996689 0.458
8 4 0.488564 0.732497 0.288
8 5 0.412048E-02 0.348471 0.265
8 6 0.486463 0.444387 0.319
RnSoln_pe_ani.dat
Run N Original ID Tr Solution St.Error Ignore
1 4 1 -1.66346 1.88209 0.696
1 2 -0.510673 1.18415 0.747
1 3 -1.27590 1.13386 0.690
1 4 -1.60900 1.36011 0.766
1 5 0.486622 0.933154 0.747
1 6 -0.930672 0.698956 0.733
2 5 1 -0.904971 1.95881 0.665
2 2 0.183355 1.18948 0.744
2 3 1.01640 1.16207 0.671
2 4 -1.20859 1.38440 0.756
2 5 0.331221 0.940795 0.742
2 6 0.520342 0.708091 0.725
3 6 1 -2.18377 2.39304 0.408
3 2 0.815435 1.63017 0.402
3 3 -0.195353 1.39953 0.450
3 4 -0.479551 1.88597 0.453
3 5 0.278962E-01 1.28492 0.403
3 6 -0.681820 0.906311 0.472
4 7 1 3.85307 1.95379 0.667
4 2 -0.982746 1.47575 0.560
4 3 -0.255710 1.32607 0.533
4 4 0.734102 1.40583 0.747
4 5 0.143902 1.13408 0.589
4 6 1.02622 0.787347 0.643
5 8 1 0.899134 1.90398 0.687
5 2 0.494630 1.18539 0.746
5 3 0.710570 1.14207 0.685
5 4 2.56304 1.36739 0.763
5 5 -0.989641 0.935446 0.746
5 6 0.659297E-01 0.702258 0.730
결과 정리
animal genetic effect | ||||||
number | tr1 | tr2 | ||||
reg1 | reg2 | reg3 | reg1 | reg2 | reg3 | |
1 | -0.1968 | -0.0147 | 0.1431 | 0.1405 | 0.0195 | 0.0800 |
2 | 0.2582 | 0.0011 | -0.2559 | -0.2552 | 0.0052 | -0.2715 |
3 | -0.0615 | 0.0136 | 0.1128 | 0.1147 | -0.0247 | 0.1915 |
4 | 0.8382 | 0.1125 | -0.5561 | -0.1415 | 0.0681 | -0.2916 |
5 | -0.4509 | -0.1109 | 0.1723 | -0.2414 | -0.0603 | -0.1156 |
6 | -0.6351 | -0.1270 | 0.2912 | -0.1079 | -0.0272 | -0.0798 |
7 | 0.8762 | 0.1948 | -0.3527 | 0.2724 | 0.0475 | 0.2170 |
8 | -0.3533 | 0.0204 | 0.4045 | 0.4886 | 0.0041 | 0.4865 |
permanent environmental effect | ||||||
number | tr1 | tr2 | ||||
reg1 | reg2 | reg3 | reg1 | reg2 | reg3 | |
4 | -1.6635 | -0.5107 | -1.2759 | -1.6090 | 0.4866 | -0.9307 |
5 | -0.9050 | 0.1834 | 1.0164 | -1.2086 | 0.3312 | 0.5203 |
6 | -2.1838 | 0.8154 | -0.1954 | -0.4796 | 0.0279 | -0.6818 |
7 | 3.8531 | -0.9827 | -0.2557 | 0.7341 | 0.1439 | 1.0262 |
8 | 0.8991 | 0.4946 | 0.7106 | 2.5630 | -0.9896 | 0.0659 |
관련 파일
'Animal Breeding > WOMBAT' 카테고리의 다른 글
wombat으로 single trait random regression model 풀기 (0) | 2014.03.13 |
---|---|
wombat으로 fixed regression model 풀기 (0) | 2014.03.13 |
WOMBAT을 이용하여 Maternal Trait Model 풀기 (0) | 2014.03.13 |
Multivariate Model(No environmental covariances) using WOMBAT (0) | 2013.04.17 |
Multivariate Model(Unequal Design Matrices) using WOMBAT (0) | 2013.04.12 |