wombat으로 single trait random regression model 풀기
예제 자료
R.A. Mrode, Linear Models for the Prediction of Animal Breeding Values. 2nd. Edition
Page 144. Example 7.2
자료입력
4 4 1 4 17.0
4 4 2 38 18.6
4 4 3 72 24.0
4 4 4 106 20.0
4 4 5 140 20.0
4 4 6 174 15.6
4 4 7 208 16.0
4 4 8 242 13.0
4 4 9 276 8.2
4 4 10 310 8.0
5 5 1 4 23.0
5 5 2 38 21.0
5 5 3 72 18.0
5 5 4 106 17.0
5 5 5 140 16.2
5 5 6 174 14.0
5 5 7 208 14.2
5 5 8 242 13.4
5 5 9 276 11.8
5 5 10 310 11.4
6 6 6 4 10.4
6 6 7 38 12.3
6 6 8 72 13.2
6 6 9 106 11.6
6 6 10 140 8.4
7 7 4 4 22.8
7 7 5 38 22.4
7 7 6 72 21.4
7 7 7 106 18.8
7 7 8 140 18.3
7 7 9 174 16.2
7 7 10 208 15.0
8 8 1 4 22.2
8 8 2 38 20.0
8 8 3 72 21.0
8 8 4 106 23.0
8 8 5 140 16.8
8 8 6 174 11.0
8 8 7 208 13.0
8 8 8 242 17.0
8 8 9 276 13.0
8 8 10 310 12.6
개체, 개체(영구환경효과), HTD(herd-test-day), DIM(days in milk), test day fat yield
위 자료를 data.txt로 저장
혈통입력
1 0 0
2 0 0
3 0 0
4 1 2
5 3 2
6 1 5
7 3 4
8 1 7
개체, 아비, 어미
위 자료를 pedi.txt로 저장
파라미터 파일 작성
# run option - 육종가를 구할 때
# RnSoln_xxx.dat 출력 파일 확인
#RUNOP -v --solvit
# run option - 육종가와 SEP(standard error of prediction)
# reliability(r2) = 1- SEP^2 / sigma_a^2
# RnSoln_xxx.dat 출력 파일 확인
RUNOP -v --blup
# run option - 좋은 초기값으로 분산성분을 추정할 때,
#RUNOP -v --good
# run option - 나쁜 초기값일 때 분산성분을 추정할 때,
#RUNOP -v --bad
# 요약 출력파일에 출력할 내용
COMMENT Single Trait Random Regression Model from Mrode, 2nd Edition, Example 7.2
# Analysis Type : random regression model
ANALYSIS RR
# 혈통 파일 이름
# SumPedigree.out 확인
PED pedi.txt
# 자료 파일 이름
DATA data.txt
animal
pe_ani 99
htd 10
dim 100
fat_yld
END DATA
# Model of analysis
# SumModel.out 확인
# 고정효과의 차수, 5개를 구하고 싶으면 (4, LEG)라고 넣을 것
MODEL
TR fat_yld
FIX htd
COV dim(4,LEG)
RRC dim
RAN animal(3,LEG) NRM
RAN pe_ani(3,LEG)
END MODEL
# 분산 성분
VAR animal 3
3.297 0.594 -1.381
0.921 -0.289
1.005
VAR pe_ani 3
6.872 -0.254 -1.101
3.171 0.167
2.457
VAR residual 1 HOM
3.71
#1 99 3.71
# SumModel.out 확인
# SumEstimates.out 확인
# SumPedigree.out 확인
# FixSolutions.out 확인
# RnSoln_xxx.dat 확인
위 파라미터 파일을 wombat.par로 저장
실행
위 세 파일을 한 폴더에 넣고 다음과 같이 실행
결과 확인
SumModel.out
======= Version 19-05-2012 ======================================= **KM** ====
Program WOMBAT : Summary of information from Set-up step
==============================================================================
Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
Analysis type : "RR"
Data file : "data.txt"
Pedigree file : "pedi.txt"
Parameter file : "wombat.par"
No. of traits = 1
nrec mean sdev min. max.
1 "fat_yld" 42 16.2095 4.45283 8.00000 24.0000
Covariables
1 "dim(4,LEG)" 42 138.381 94.9724 4.00000 310.000
Control variables in RR analysis
nrec mean sdev min. max.
1 "dim" 42 138.381 94.9724 4.00000 310.000
Fixed effects
1 "fat_yld" nlev
1 "htd" 10
Random effects nlev
1 "animal" 8 NRM
2 "pe_ani" 5 IDE
======== end of file ============================13-03-2014==========23:26====
SumPedigree.out
======= Version 19-05-2012 ======================================= **KM** ====
Program WOMBAT : Summary of Pedigree Information
==============================================================================
Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
Analysis type : "RR"
Data file : "data.txt"
Pedigree file : "pedi.txt"
Parameter file : "wombat.par"
No. of animal IDs in data file = = 5
No. of animal IDs in total = = 8
*****Pedigree Structure for random effect : 1 ****************************
Original no. of animals = 8
No. of animals after pruning = 8
... proportion (%) remaining = 100.0
No. of levels w/out records = 3
No. of levels with records = 5 100.0%
... 5 record(s) = 1 20.0%
... 7-10 record(s) = 4 80.0%
Minimum no. of records specified = 2
No. of animals with at least 2 records = 5 100.0%
No. of parents which have progeny which
have at least 2 records = 6
No. of animals with at least 2 records
themselves or on a parent = 5
No. of animals with at least 2 records
themselves, on a parent or sib(s) = 5 62.5%
... in the data = 5 100.0%
Minimum no. of records specified = 3
No. of animals with at least 3 records = 5 100.0%
No. of parents which have progeny which
have at least 3 records = 6
No. of animals with at least 3 records
themselves or on a parent = 5
No. of animals with at least 3 records
themselves, on a parent or sib(s) = 5 62.5%
... in the data = 5 100.0%
Minimum no. of records specified = 4
No. of animals with at least 4 records = 5 100.0%
No. of parents which have progeny which
have at least 4 records = 6
No. of animals with at least 4 records
themselves or on a parent = 5
No. of animals with at least 4 records
themselves, on a parent or sib(s) = 5 62.5%
... in the data = 5 100.0%
No. of animals w/out offspring = 2 25.0%
No. of animals with offspring = 6 75.0%
... and records = 3 37.5%
No. of animals with unknown sire = 3
No. of animals with unknown dam = 3
No. of animals with both parents unknown = 3
No. of animals with records =
... and unknown sire = 0
... and unknown dam = 0
... and both parents unknown = 0
No. of sires = 2
... with progeny in the data = 2
... with records & progeny in data = 0
No. of dams = 4
... with progeny in the data = 4
... with records & progeny in data = 3
No. of animals with known/unpruned grand-parents
... with paternal grandsire = 0
... with paternal granddam = 0
... with maternal grandsire = 3
... with maternal granddam = 3
random effect no. = 1 NRM
no. of elements in NRM/GIN inverse 23
log determinant = -3.4657359027997265
random effect no. = 2 IDE
no. of elements in NRM/GIN inverse 0
log determinant = 0.
======== end of file ============================13-03-2014==========23:26====
FixSolutions.out
======= Version 19-05-2012 ======================================= **KM** ======================================
Program WOMBAT : GLS solutions for fixed effects
================================================================================================================
Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
Covariables for trait no. 1 "fat_yld"
Covariable Reg.coeff Solution S.Error
1 dim(4,LEG) 1 -0.625391 2.03781
1 dim(4,LEG) 2 -0.134573 1.24413
1 dim(4,LEG) 3 0.347903 0.554777
1 dim(4,LEG) 4 -0.421767 0.516324
Fixed effects for trait no. 1 "fat_yld"
Effect Orig.code Level Solution S.Error SolSum=0 No.recs Eff.Mean
1 htd 1 1 5.64162 3.97819 5.02704 3 20.733
1 htd 2 2 3.14627 3.04818 2.53169 3 19.867
1 htd 3 3 4.11556 2.66465 3.50099 3 21.000
1 htd 4 4 3.79846 2.35169 3.18388 4 20.700
1 htd 5 5 1.87155 2.08872 1.25698 4 18.850
1 htd 6 6 -1.43445 1.82919 -2.04902 5 14.480
1 htd 7 7 -1.33602 1.66856 -1.95060 5 14.860
1 htd 8 8 -1.27273 1.74578 -1.88730 5 14.980
1 htd 9 9 -3.94007 1.96976 -4.55464 5 12.160
1 htd 10 10 -4.44444 2.44300 -5.05902 5 11.080
1 htd 0.614574
** marks effects which have been set to zero for the analysis
======== end of file ============================13-03-2014==========23:26======================================
RnSoln_animal.dat 확인
Run N Original ID Tr Solution St.Error Ignore Inbr %
1 1 1 -0.583124E-01 1.72949 0.305 0.000
1 2 0.551960E-01 0.931802 0.239
1 3 -0.441837E-01 0.958263 0.294
2 2 1 -0.727789E-01 1.78148 0.193 0.000
2 2 -0.304888E-01 0.948263 0.154
2 3 -0.243957E-01 0.985140 0.185
3 3 1 0.131091 1.75464 0.257 0.000
3 2 -0.247072E-01 0.941440 0.194
3 3 0.685794E-01 0.971617 0.246
4 4 1 0.344565 1.70689 0.341 0.000
4 2 0.628266E-02 0.923341 0.273
4 3 -0.316413 0.947214 0.327
5 5 1 -0.453733 1.67477 0.386 0.000
5 2 -0.520159E-01 0.911875 0.312
5 3 0.279820 0.931168 0.370
6 6 1 -0.548552 1.76190 0.242 0.000
6 2 0.730074E-01 0.945966 0.168
6 3 0.194574 0.970028 0.252
7 7 1 0.851809 1.71901 0.322 0.000
7 2 -0.950157E-02 0.938473 0.209
7 3 -0.313065 0.952393 0.312
8 8 1 0.220854 1.77165 0.392 12.500
8 2 0.126967E-01 0.965884 0.316
8 3 -0.174409E-01 0.984880 0.377
RnSoln_pe_ani.dat
Run N Original ID Tr Solution St.Error Ignore
1 4 1 -0.648602 1.86278 0.704
1 2 -0.360050 1.26306 0.705
1 3 -1.47183 1.13897 0.687
2 5 1 -0.776143 1.94435 0.671
2 2 0.137007 1.30086 0.683
2 3 0.968819 1.17481 0.662
3 6 1 -1.99268 2.41239 0.391
3 2 0.985107 1.66794 0.350
3 3 -0.693079E-01 1.40407 0.445
4 7 1 3.51876 1.94636 0.670
4 2 -1.05097 1.54725 0.495
4 3 -0.404755 1.33179 0.527
5 8 1 -0.101334 1.88597 0.695
5 2 0.288905 1.27583 0.698
5 3 0.977070 1.15081 0.679
관련 파일
'Animal Breeding > WOMBAT' 카테고리의 다른 글
wombat으로 multiple trait random regression model 풀기 (0) | 2014.04.01 |
---|---|
wombat으로 fixed regression model 풀기 (0) | 2014.03.13 |
WOMBAT을 이용하여 Maternal Trait Model 풀기 (0) | 2014.03.13 |
Multivariate Model(No environmental covariances) using WOMBAT (0) | 2013.04.17 |
Multivariate Model(Unequal Design Matrices) using WOMBAT (0) | 2013.04.12 |