wombat으로 fixed regression model 풀기
예제 자료
R.A. Mrode, Linear Models for the Prediction of Animal Breeding Values. 2nd. Edition
Page 137. Example 7.1
자료입력
4 4 1 4 17.0
4 4 2 38 18.6
4 4 3 72 24.0
4 4 4 106 20.0
4 4 5 140 20.0
4 4 6 174 15.6
4 4 7 208 16.0
4 4 8 242 13.0
4 4 9 276 8.2
4 4 10 310 8.0
5 5 1 4 23.0
5 5 2 38 21.0
5 5 3 72 18.0
5 5 4 106 17.0
5 5 5 140 16.2
5 5 6 174 14.0
5 5 7 208 14.2
5 5 8 242 13.4
5 5 9 276 11.8
5 5 10 310 11.4
6 6 6 4 10.4
6 6 7 38 12.3
6 6 8 72 13.2
6 6 9 106 11.6
6 6 10 140 8.4
7 7 4 4 22.8
7 7 5 38 22.4
7 7 6 72 21.4
7 7 7 106 18.8
7 7 8 140 18.3
7 7 9 174 16.2
7 7 10 208 15.0
8 8 1 4 22.2
8 8 2 38 20.0
8 8 3 72 21.0
8 8 4 106 23.0
8 8 5 140 16.8
8 8 6 174 11.0
8 8 7 208 13.0
8 8 8 242 17.0
8 8 9 276 13.0
8 8 10 310 12.6
개체, 개체(영구환경효과), HTD(herd-test-day), DIM(days in milk), test day fat yield
위 자료를 data.txt로 저장
혈통입력
1 0 0
2 0 0
3 0 0
4 1 2
5 3 2
6 1 5
7 3 4
8 1 7
개체, 아비, 어미
위 자료를 pedi.txt로 저장
파라미터 파일 작성
# run option - 육종가를 구할 때
# RnSoln_xxx.dat 출력 파일 확인
RUNOP -v --solvit
# run option - 육종가와 SEP(standard error of prediction)
# reliability(r2) = 1- SEP^2 / sigma_a^2
# RnSoln_xxx.dat 출력 파일 확인
#RUNOP -v --blup
# run option - 좋은 초기값으로 분산성분을 추정할 때,
#RUNOP -v --good
# run option - 나쁜 초기값일 때 분산성분을 추정할 때,
#RUNOP -v --bad
# 요약 출력파일에 출력할 내용
COMMENT Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
# Analysis Type
ANALYSIS UNI
# 혈통 파일 이름
# SumPedigree.out 확인
PED pedi.txt
# 자료 파일 이름
DATA data.txt
animal
pe_ani 99
htd 10
dim
milk_yld
END DATA
# Model of analysis
# SumModel.out 확인
MODEL
TR milk_yld
FIX htd
COV dim(4,LEG)
RAN animal NRM
RAN pe_ani IDE
END MODEL
# 분산 성분
VAR animal 1
5.521
VAR pe_ani 1
8.47
VAR error 1
3.71
# SumModel.out 확인
# SumEstimates.out 확인
# SumPedigree.out 확인
# FixSolutions.out 확인
# RnSoln_xxx.dat 확인
위 파라미터 파일을 wombat.par로 저장
실행
위 세 파일을 한 폴더에 넣고 다음과 같이 실행
결과 확인
SumModel.out
======= Version 19-05-2012 ======================================= **KM** ====
Program WOMBAT : Summary of information from Set-up step
==============================================================================
Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
Analysis type : "UNI"
Data file : "data.txt"
Pedigree file : "pedi.txt"
Parameter file : "wombat.par"
No. of traits = 1
nrec mean sdev min. max.
1 "milk_yld" 42 16.2095 4.45283 8.00000 24.0000
Covariables
1 "dim(4,LEG)" 42 138.381 94.9724 4.00000 310.000
Fixed effects
1 "milk_yld" nlev
1 "htd" 10
Random effects nlev
1 "animal" 8 NRM
2 "pe_ani" 5 IDE
======== end of file ============================13-03-2014==========05:05====
SumPedigree.out
======= Version 19-05-2012 ======================================= **KM** ====
Program WOMBAT : Summary of Pedigree Information
==============================================================================
Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
Analysis type : "UNI"
Data file : "data.txt"
Pedigree file : "pedi.txt"
Parameter file : "wombat.par"
No. of animal IDs in data file = = 5
No. of animal IDs in total = = 8
random effect no. = 1 NRM
no. of elements in NRM/GIN inverse 23
log determinant = -3.4657359027997265
random effect no. = 2 IDE
no. of elements in NRM/GIN inverse 0
log determinant = 0.
======== end of file ============================13-03-2014==========05:05====
FixSolutions.out
======= Version 19-05-2012 ======================================= **KM** ======================================
Program WOMBAT : GLS solutions for fixed effects
================================================================================================================
Fixed Regression Model from Mrode, 2nd Edition, Example 7.1
Covariables for trait no. 1 "milk_yld"
Covariable Reg.coeff Solution
1 dim(4,LEG) 1 -0.522879
1 dim(4,LEG) 2 -0.124463
1 dim(4,LEG) 3 0.535447
1 dim(4,LEG) 4 -0.419495
Fixed effects for trait no. 1 "milk_yld"
Effect Orig.code Level Solution SolSum=0 No.recs Eff.Mean
1 htd 1 1 6.30034 5.68808 3 20.733
1 htd 2 2 3.31709 2.70483 3 19.867
1 htd 3 3 4.02519 3.41293 3 21.000
1 htd 4 4 3.60258 2.99032 4 20.700
1 htd 5 5 1.70333 1.09107 4 18.850
1 htd 6 6 -1.48866 -2.10092 5 14.480
1 htd 7 7 -1.36809 -1.98035 5 14.860
1 htd 8 8 -1.28826 -1.90052 5 14.980
1 htd 9 9 -4.00293 -4.61519 5 12.160
1 htd 10 10 -4.67798 -5.29025 5 11.080
1 htd 0.612261
** marks effects which have been set to zero for the analysis
======== end of file ============================13-03-2014==========05:05======================================
RnSoln_animal.dat 확인
Run N Original ID Tr Solution Inbr %
1 1 1 -0.329992 0.000
2 2 1 -0.160408 0.000
3 3 1 0.490400 0.000
4 4 1 0.432813E-02 0.000
5 5 1 -0.244940 0.000
6 6 1 -0.836741 0.000
7 7 1 1.14770 0.000
8 8 1 0.378609 12.500
RnSoln_pe_ani.dat
Run N Original ID Tr Solution
1 4 1 -0.615620
2 5 1 -0.415134
3 6 1 -1.68533
4 7 1 2.80889
5 8 1 -0.928011E-01
관련 파일
'Animal Breeding > WOMBAT' 카테고리의 다른 글
wombat으로 multiple trait random regression model 풀기 (0) | 2014.04.01 |
---|---|
wombat으로 single trait random regression model 풀기 (0) | 2014.03.13 |
WOMBAT을 이용하여 Maternal Trait Model 풀기 (0) | 2014.03.13 |
Multivariate Model(No environmental covariances) using WOMBAT (0) | 2013.04.17 |
Multivariate Model(Unequal Design Matrices) using WOMBAT (0) | 2013.04.12 |