# Linear Models for the Prediction of Animal Breeding Values, 3rd Edition.

# Raphael Mrode

# Example 11.1 p180

간단한 설명은 다음 참조

2020/12/16 - [Animal Breeding/R for Genetic Evaluation] - Fixed Effect Model for SNP Effects, unweighted analysis

 

Fixed Effect Model for SNP Effects, unweighted analysis

# Linear Models for the Prediction of Animal Breeding Values, 3rd Edition. # Raphael Mrode # Example 11.1 p180 SNP effect를 고정효과로 모형에 넣어 SNP 추정하고 개체의 genotype을 이용..

bhpark.tistory.com

 

Data

13 0 0 1 558 9 0.00179211 1.3571429 -0.3571429 0.2857143
14 0 0 1 722 13.4 0.00138504 0.3571429 -0.3571429 -0.7142857
15 13 4 1 300 12.7 0.00333333 0.3571429 0.6428571 1.2857143
16 15 2 1 73 15.4 0.01369863 -0.6428571 -0.3571429 1.2857143
17 15 5 1 52 5.9 0.01923077 -0.6428571 0.6428571 0.2857143
18 14 6 1 87 7.7 0.01149425 0.3571429 0.6428571 -0.7142857
19 14 9 1 64 10.2 0.01562500 -0.6428571 -0.3571429 0.2857143
20 14 9 1 103 4.8 0.00970874 -0.6428571 0.6428571 0.2857143

 

1 ~ 3 : animal, sire, dam

4 : general mean

5 : EDC(using weight)

6 : Fat DYD

7 : EDC 역수

8 - 10 : SNP1 ~ SNP3의 coding하고 평균을 0으로 scaling한 값

(7 - 10 컬럼은 원래의 자료에서 계산을 하여 입력하여야 한다.)

 

Pedigree

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
14 0 0
15 13 4
16 15 2
17 15 5
18 14 6
19 14 9
20 14 9
21 1 3
22 14 8
23 14 11
24 14 10
25 14 7
26 14 12

 

Renumf90 Parameter File

# Parameter file for program renf90; it is translated to parameter
# file for BLUPF90 family programs.
DATAFILE
fem_snp_data2.txt
TRAITS
6
FIELDS_PASSED TO OUTPUT
 
WEIGHT(S)
 
RESIDUAL_VARIANCE
245
EFFECT
4 cross alpha
EFFECT
8 cov 
EFFECT
9 cov 
EFFECT
10 cov 
EFFECT
1 cross alpha
RANDOM
animal
FILE
fem_snp_pedi.txt
FILE_POS
1 2 3
PED_DEPTH
0
(CO)VARIANCES
35.241
OPTION solv_method FSPAK

 

실행

명령창에서 다음과 같은 명령어로 renumf90을 실행한다.

renumf90 renumf90_fem_snp_uw.par | tee renumf90_fem_snp_uw_01.log

 

 

Renumf90 실행 로그

 RENUMF90 version 1.145
 renumf90_fem_snp_uw.par
 datafile:fem_snp_data2.txt
 traits:           6
 R
   245.0    

 Processing effect  1 of type cross     
 item_kind=alpha     

 Processing effect  2 of type cov       

 Processing effect  3 of type cov       

 Processing effect  4 of type cov       

 Processing effect  5 of type cross     
 item_kind=alpha     
 pedigree file name  "fem_snp_pedi.txt"
 positions of animal, sire, dam, alternate dam, yob, and group     1     2     3     0     0     0     0
 all pedigrees to be included
 Reading (CO)VARIANCES:           1 x           1

 Maximum size of character fields: 20

 Maximum size of record (max_string_readline): 800

 Maximum number of fields for input file (max_field_readline): 100

 Pedigree search method (ped_search): convention

 Order of pedigree animals (animal_order): default

 Order of UPG (upg_order): default

 Missing observation code (missing): 0

 hash tables for effects set up
 first 3 lines of the data file (up to 70 characters)
    13 0 0 1 558 9 0.00179211 1.3571429 -0.3571429 0.2857143
    14 0 0 1 722 13.4 0.00138504 0.3571429 -0.3571429 -0.7142857
    15 13 4 1 300 12.7 0.00333333 0.3571429 0.6428571 1.2857143
 read            8  records
 table with            1  elements sorted
 added count
 Effect group            1  of column            1  with            1  levels
 table expanded from        10000  to        10000  records
 added count
 Effect group            5  of column            1  with            8  levels
 wrote statistics in file "renf90.tables"

 Basic statistics for input data  (missing value code is '0')
 Pos  Min         Max         Mean        SD                 N
   6    4.8000      15.400      9.8875      3.7434           8
   8  -0.64286      1.3571    -0.17857E-01 0.74402           8
   9  -0.35714     0.64286     0.14286     0.53452           8
  10  -0.71429      1.2857     0.28571     0.75593           8

 Correlation matrix
        6     8     9    10
  6   1.00  0.12 -0.60  0.35
  8   0.12  1.00 -0.18 -0.25
  9  -0.60 -0.18  1.00  0.00
 10   0.35 -0.25  0.00  1.00

 Counts of nonzero values (order as above)
          8         8         8         8
          8         8         8         8
          8         8         8         8
          8         8         8         8

 random effect   5
 type:animal    
 opened output pedigree file "renadd05.ped"
 read           26  pedigree records
 loaded           18  parent(s) in round            0

 Pedigree checks
 
 Number of animals with records                  =            8
 Number of parents without records               =           18
 Total number of animals                         =           26

 Wrote parameter file "renf90.par"
 Wrote renumbered data "renf90.dat" 8 records

 

Renumf90 실형 결과 파일

renf90.tables

 Effect group 1 of column 1 with 1 levels, effect # 1
 Value    #    consecutive number
1 8 1 

 

renadd05.ped

26 3 20 1 0 2 0 0 0 26
1 0 0 3 0 0 1 1 0 13
21 9 11 1 0 2 0 0 0 21
13 0 0 3 0 0 0 0 1 5
2 3 17 1 0 2 1 0 0 19
3 0 0 3 0 0 1 8 0 14
22 3 16 1 0 2 0 0 0 22
11 0 0 3 0 0 0 0 1 3
16 0 0 3 0 0 0 0 1 8
4 1 12 1 0 2 1 2 0 15
23 3 19 1 0 2 0 0 0 23
18 0 0 3 0 0 0 0 1 10
9 0 0 3 0 0 0 1 0 1
14 0 0 3 0 0 0 0 1 6
5 4 10 1 0 2 1 0 0 16
24 3 18 1 0 2 0 0 0 24
19 0 0 3 0 0 0 0 1 11
12 0 0 3 0 0 0 0 1 4
6 4 13 1 0 2 1 0 0 17
17 0 0 3 0 0 0 0 2 9
25 3 15 1 0 2 0 0 0 25
20 0 0 3 0 0 0 0 1 12
7 3 17 1 0 2 1 0 0 20
10 0 0 3 0 0 0 0 1 2
8 3 14 1 0 2 1 0 0 18
15 0 0 3 0 0 0 0 1 7

설명은 이전 포스트 참조

 

renf90.dat

 9 1 1.3571429 -0.3571429 0.2857143 1
 13.4 1 0.3571429 -0.3571429 -0.7142857 3
 12.7 1 0.3571429 0.6428571 1.2857143 4
 15.4 1 -0.6428571 -0.3571429 1.2857143 5
 5.9 1 -0.6428571 0.6428571 0.2857143 6
 7.7 1 0.3571429 0.6428571 -0.7142857 8
 10.2 1 -0.6428571 -0.3571429 0.2857143 2
 4.8 1 -0.6428571 0.6428571 0.2857143 7

 

renf90.par

# BLUPF90 parameter file created by RENUMF90
DATAFILE
 renf90.dat
NUMBER_OF_TRAITS
           1
NUMBER_OF_EFFECTS
           5
OBSERVATION(S)
    1
WEIGHT(S)
 
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
 2         1 cross 
 3 1 cov 
 4 1 cov 
 5 1 cov 
 6        26 cross 
RANDOM_RESIDUAL VALUES
   245.00    
 RANDOM_GROUP
     5
 RANDOM_TYPE
 add_animal   
 FILE
renadd05.ped                                                                    
(CO)VARIANCES
   35.241    
OPTION solv_method FSPAK

 

BLUPF90 실행

다음과 같은 명령어로 blupf90을 실행

blupf90 renf90.par | tee blupf90_fem_snp_uw_01.log

 

실행 화면

 

blupf90 실행 로그

renf90.par
     BLUPF90 ver. 1.68

 Parameter file:             renf90.par
 Data file:                  renf90.dat
 Number of Traits             1
 Number of Effects            5
 Position of Observations      1
 Position of Weight (1)        0
 Value of Missing Trait/Observation           0

EFFECTS
 #  type                position (2)        levels   [positions for nested]
    1  cross-classified       2         1
    2  covariable             3         1
    3  covariable             4         1
    4  covariable             5         1
    5  cross-classified       6        26

 Residual (co)variance Matrix
  245.00    

 Random Effect(s)    5
 Type of Random Effect:      additive animal
 Pedigree File:              renadd05.ped                                                                                                                                                                                                                                              
 trait   effect    (CO)VARIANCES
  1       5     35.24    

 REMARKS
  (1) Weight position 0 means no weights utilized
  (2) Effect positions of 0 for some effects and traits means that such
      effects are missing for specified traits
 

 * The limited number of OpenMP threads = 4

 * solving method (default=PCG):FSPAK               
 
 Data record length =            6
 # equations =           30
 G
  35.241    
 read            8  records in   6.2500000E-02  s,                      50 
  nonzeroes
  read           26  additive pedigrees
 finished peds in   6.2500000E-02  s,                     103  nonzeroes
 solutions stored in file: "solutions"

 

blupf90 실행 결과 : solutions

trait/effect level  solution
   1   1         1          9.89535730
   1   2         1          0.60686511
   1   3         1         -4.08027436
   1   4         1          1.93415480
   1   5         1         -0.29881631
   1   5         2         -0.09223369
   1   5         3          0.25587182
   1   5         4          0.14242845
   1   5         5          0.25423609
   1   5         6         -0.08517366
   1   5         7         -0.18078055
   1   5         8          0.27054660
   1   5         9          0.00000000
   1   5        10          0.12201458
   1   5        11          0.00000000
   1   5        12          0.19455774
   1   5        13         -0.10425859
   1   5        14          0.09507379
   1   5        15          0.00000000
   1   5        16          0.00000000
   1   5        17         -0.26444303
   1   5        18          0.00000000
   1   5        19          0.00000000
   1   5        20          0.00000000
   1   5        21          0.00000000
   1   5        22          0.12793591
   1   5        23          0.12793591
   1   5        24          0.12793591
   1   5        25          0.12793591
   1   5        26          0.12793591

 

2, 3, 4 effect가 SNP effect이다. 이들 SNP를 이용하여 DGV를 계산하는 것은 다음 포스트를 참조한다. 5 effect가 polygenic effect이다.

2020/12/16 - [Animal Breeding/R for Genetic Evaluation] - Fixed Effect Model for SNP Effects, unweighted analysis

 

Fixed Effect Model for SNP Effects, unweighted analysis

# Linear Models for the Prediction of Animal Breeding Values, 3rd Edition. # Raphael Mrode # Example 11.1 p180 SNP effect를 고정효과로 모형에 넣어 SNP 추정하고 개체의 genotype을 이용..

bhpark.tistory.com

 

+ Recent posts